Interim Economic Assessment of the Healthy Catchments Project proposed "Solutions Package"

The AgriBusiness Group

Charlotte Irving and Stuart Ford

The AgriBusiness Group

Assess the effect of changes in farm incomes across the different sectors, following:

- Changes to the Opihi River flow and allocation regime, and the establishment of new minimum flows
 - ZIPA Initial Minimum Flow Recommendations (Step 1 & Step 2 in page 53 and 55)

AgriBusiness Group_™

- Cultural flow preferences (COMAR)
- "Flow and Allocation Party" flow preference
- Ecological minimum flow requirements, NIWA

This presentation shows the interim results for Step 1 and Step 2. COMAR flow regime is still being reviewed, and the Flow and Allocation Party flow preference and NIWA flow requirements are yet to be determined.

Assumptions

 Surface water supply availability under different regimes provided by ECAN (1998 – 2015), post Opuha dam.

The

AgriBusiness Group_™

- There was one significant drought year (2014-15) during this period, with the remaining years being relatively mediocre.
- ZIPA Initial Minimum Flow Recommendations are Step 1 (5-years) and Step 2 (10-years)
- ZIPA recommendations incorporate 150 day stream depletion calculation
- No drought mitigations (e.g. increase in supplements purchased) are factored into this analysis
- Apparent anomalies in some flow data allocation blocks (Temuka A block moving to Temuka B in some instances)

Methodology

The impact of proposed flow regimes on Cash Operating Surplus for different land uses

Calculate the impact of existing and proposed flow regimes

Conversion into agronomic effects

Financial Impact on irrigated Farm Financial Models

Financial impact on total area Flow-on effects

- Daily modelled irrigation demands:
 - For a range of crop / soil / climate combinations,
 - Based on demand modelling done for the OTOP groundwater modelling project.

AariBusiness

- Supply reliability calculated on a daily basis (accounting for both supply and demand)
- Reliability summarised for each combination of scenario / allocation block / soil / crop

The ¹ AgriBusiness ∫ Group

Irrigation consents are classed into four categories:

- Non-Affiliated A Permits (AN)
- Non-Affiliated B Permits (BN)
- Affiliated A Permits (AA)
- Affiliated B Permits (BA)

Surface Water Allocation Zone	Allocation blocks
Opihi SH1	AN
	BN
Opihi Saleyards	AA+BA
North Opuha	AA +BA
	AN
South Opuha	AA +BA
	AN
1	BN
Opihi Rockwood	AA +BA
	AN
	BN
Te Ana Wai	AA +BA
	AN
	BN
Temuka	A
	В

The AgriBusiness Group_™

Comparison of the impact of the current situation and ZIPA Step 1 and Step 2 on irrigation reliability in Temuka (A Block), 1998-2015 average and 2014-15 drought

■ Current ■ ZIPA Step 1 ■ ZIPA Step 2

The **AgriBusiness**

Group[™]

Conclusion

• The proposed flow regimes for Steps 1 & 2 are relatively small in most cases; this is reflected in relatively small changes to the supply reliability.

The ' AgriBusiness

Four elements of Supply Reliability:

- Severity full or partial days restrictions.
- Frequency how often it occurs.
- Duration period of consecutive days.
- Timing when in the season it occurs.

The

AgriBusiness

Conversion of Plant Available Water (PAW):

- PAW is 80 MM.
- The soil is full at the commencement.
- Evapotranspiration is 4.0 mm / day.
- After 20 days without irrigation, plant growth stops completely.
- Loss of production assumed to start after 6 days
- Recovery is not necessarily instantaneous.

Formula for the calculation is:

Pasture production (kgDM/ha) = D x GR x F Where: D = average days lost GR = average daily growth rate F = loss modification factor

The ' AgriBusiness ∫ Group_M

The impact of the current situation and ZIPA Step 1 and Step 2 on pasture production in Temuka (A Block), 1998-2015 average and 2014-15 drought

Representative models used:

- Dairy Production System 3
- Dairy Production System 4
- Arable
- Sheep, Beef and Dairy Support

The

AariBusiness

Use of SOPI data to create averages for product returns

Dairy Model Key assumptions

- 230 ha effective
- System 3: 10% of cows diet imported supplements
- System 4: 25% of cows diet is imported supplements
- Cow numbers and total MS production are driven off kgDM/ha.
- Cow numbers drive variable expenses

Sheep, Beef and Dairy Support Key assumptions

- 220ha trading and finishing property
- 16.3 ha kale (13.5t/ha base), contract grazing dairy cows
- 16.3ha spring barley (9t/ha grain base)
- Pasture production drives stock units per hectare. Stock units drive variable expenses.
- 68% SU- lambs; 32% SU- steers.

Arable Key assumptions

160ha mixed cropping property

Crop	На	Yield tDM/ha (base model)	
Ryegrass seed	40	2.0	
Kale	20	13.5	
Potatoes	20	50.0	
Wheat	20	12.0	
Barley	40	9.0	

The

AgriBusiness Group_™

Rating up the existing mode A griBusiness Group

Irrigated land use in Opihi and Temuka catchments

Rating up the existing models

Total hectares by land use, SWAZ and allocation block

The AgriBusiness Group

SWAZ	Allocation blocks	Dairy System 3	Dairy System 4	Sheep, Beef and Dairy Support	Arable	Total
Opihi SH1	AN	450	300	177	82	1009
	BN	115	76	82	82	354
Opihi Saleyards	AA+BA	1212	808	1178	168	3366
North Opuha	AA +BA	0	0			0
	AN	0	0			0
South Opuha	AA +BA	237	158	99	0	494
	AN	30	20	12	0	62
	BN	30	20	12	0	62
Opihi Rockwood	AA +BA	757	504	631	210	2102
	AN	42	28	23	23	117
	BN	42	28	23	23	117
Te Ana Wai	AA +BA	673	449	456	0	1577
	AN	42	28	18	0	88
	BN	42	28	18	0	88
Temuka	А	2271	1514	968	792	5545
	В	1373	915	528	440	3256
TOTAL		7314	4874	4225	1821	18235

Flow On Effects

• Utilised multipliers created from the 2013 55 sector industry sector for Canterbury:

The ' AgriBusiness ∫ Group

- Gross Output,
- Value added,
- Employment (FTE) and
- Personal Income.

The tyranny of averages

Impacted by:

- The variability of the flow regime.
- The use of average income data.
- The use of representative farm models.

The

AgriBusiness Group_™

Financial Results

Average data (1998-2015 average)

			(\$ millio	on)		
Scenario	Total	revenue	Total exper	ises	Total Oper Surp	Cash ating lus
Current		133.4	4	82.	2	49.5
Step 1		129.9	9	77.	9	47.7
Step 2		131.	1	78.	4	48.4

The AgriBusiness Group

Financial Results

Maximum data (2014-15 drought)

			(\$ millio	n)		
Scenario	Total	Total revenue Total expense		Total Casl nses Operating Surplus		I Cash rating olus
Current		123.	7	77.	8	44.4
Step 1		107.2	2	67.	8	35.4
Step 2		108.	8	68.	5	36.3

The AgriBusiness Group

Step 1 Scenario Step 2 Scenario

ZIPA Step 1 ZIPA Step 2

Financial Results

Gross Output (flow-on effects)

1998-2015 average

ge 2014-15 drought

Gross Output (\$ million)				
Land Use	Current	Step 1	Step 2	
Dairy	152.1	148.1	149.5	
Sheep and Beef	19.2	18.8	17.6	
Arable	13.8	13.3	12.5	
TOTAL	185.0	180.2	179.7	

	Gross Output (\$ million)				
Land Use	Current	Step 1	Step 2		
Dairy	140.6	121.8	123.7		
Sheep and Beef	18.0	16.5	15.5		
Arable	12.9	10.4	9.9		
TOTAL	171.6	148.7	149.0		

The AgriBusiness Group

ZIPA Step 1
ZIPA Step 2

Consideration of the data.

The average data indicates that there is a marginal change from the current and very little difference between Step 1 and Step 2

The / AgriBusiness

- Because of the nature of the river flow regime consideration of the average data should be taken with caution.
- The impact of a maximum restriction event is quite severe.
- Depends upon the frequency of events modelled.
- It is the difference between allocation regimes which is the most relevant more than the absolute values.

Possible next steps

- Review the Aqualinc data
- Create financial models representative of each SWAZ

The ' AgriBusiness ∫ Group_™

- Report individual SWAZ impacts
- Test variability of different product prices