DIY Irrigation Evaluation Measure application depth and distribution uniformity (DU)

The 'Bucket Test'

Use a set of buckets to measure how much water is being applied by the irrigator and how uniformly. Carry out these measurements at least once, even if there is a digital readout on the machine, as sometimes they can be wrong.

- 1. Spread 10 to 50 buckets evenly across the irrigated area putting a stone or weight in each bucket for stability. See the bucket layout suggestions
- 2. Operate the irrigation on that area as per normal procedure
- 3. Measure and record how much water is in each bucket using the tables below
- 4. Calculate the application depth and application uniformity using the steps on the following pages.

Bucket	Irrigator	Irrigator	Irrigator
number	1	2	3
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
Total			
volume	ml	ml	ml

Bucket	Irrigator 1	Irrigator	Irrigator 2
11umber 21		4	3
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
Total			
volume	ml	ml	ml

This 'bucket test' guide has been adapted from the 'DIY Irrigation Evaluation' publication Version 1 (2012). Get the full DIY at <u>http://www.dairynz.co.nz/publications/environment/diy-irrigation-evaluation-guide/</u> or phone 0800 4 DairyNZ (0800 4 324 7969)

Bucket test layout: travelling irrigator

Bucket test layout: centre-pivot

Centre pivot and travelling irrigators

	Value	Irrigator 1	Irrigator 2	Irrigator 3	Units
Number of buckets	Α				
Total volume of buckets	В				ml
Average volume C = B ÷ A	С				ml
Total number of buckets \div 4 D = A \div 4	D				
Total volume of water from the lowest 25% of buckets (refer to previous page)	E				ml
Average volume of water from lowest 25% of buckets (refer to previous page) F = E ÷ D	F				ml
Width across the bucket (inside top diameter)	G	Warehouse bucket = 255mm			mm
Bucket radius H = G ÷ 2	Н	255 ÷ 2 =127.5mm			mm
Bucket area (πr^2) : I = 3.14 x H x H	I	51044mm²			mm²
-					
Average application depth $J = 1000 \times C \div I$ Or for 255mm bucket $J = C \times 0.02$	J	warehouse bucket J = C x 0.02			mm
Average distribution uniformity (DU) K = F ÷ C	к				%

The AgriBusiness Group

K-line irrigator

- 1. Spread 12 to 20 (a multiple of 4) buckets evenly, every 2-3 metres under the K-line, as shown in the diagram, putting a stone or weight in each bucket for stability
- 2. Operate the irrigation on that area as per normal procedure (allow at least 6 hours to collect enough water to measure)
- 3. Measure how much water is in the buckets after a known amount of time, and calculate the average application depth and distribution uniformity.

Bucket layout: k-line

The unique watering pattern and low application rate of k-line irrigators require a different bucket test design and slightly different calculations to determine application depth.

To do this:

	Value	Irrigator 1	Irrigator 2	Irrigator 3	Units
Number of buckets	Α				
Total volume of buckets	В				ml
Average volume $C = B \div A$	С				ml
Total number of buckets \div 4 D = A \div 4	D				
Total volume of water from the lowest 25% of buckets (refer to front page)	E				ml
Average volume of water from lowest 25% of buckets (refer to front page) F = E ÷ D	F				ml
Width correct the		Warabausa buskat			
bucket (inside top diameter)	G	= 255mm			mm
Bucket radius H = G ÷ 2	Н	255 ÷2=127.5mm			mm
Bucket area (πr2): I = 3.14 x H x H	I	51044mm ²			mm²
Time that buckets were under k-lines	J				hours
Average application depth (1 hr) $K = 1000 \times C \div I \div J$ Or for 255mm bucket $K = C \times 0.02 \div J$	к	Warehouse bucket $K = C \times 0.02 \div J$			mm
Or					
Average application depth (12 hr) L = K x 12	L				mm
Or					
Average application depth (24 hr) M = K x 24	М				mm
Average distribution uniformity (DU) N = $F \div C$	Ν				%

The AgriBusiness Group

Common unit conversions

Flow rate

	m³/hr	m³/min	gpm	l/s
m³/hr	1	0.017	3.7	0.28
m³/min	60	1	220	17
gpm	0.27	0.0045	1	0.076
l/s	3.6	0.060	13.2	1

Pressure

	psi	kPa	bar	m
psi	1	6.9	0.069	0.70
kPa	0.145	1	0.01	0.10
bar	14.5	100	1	10
m	1.4	9.8	0.098	1

System capacity

l/s/ha x 8.64 = mm/day

mm/day x 0.116 = l/s/ha

Water depths and volumes

1 mm applied to 1 $m^2 = 1$ litre	1 mm applied to 1 ha = 10 m^3
Seasonal volume (m ³) $ ightarrow$ mm applied	$m^3 \div ha \div 10 = mm$
mm applied (irrigation or rainfall) $ ightarrow$ m 3	mm x 10 x ha = m^3

Other tools

Soil moisture monitoring - There are many methods available to show how irrigation is affecting the plant root zone. **myirrigation.co.nz** > Click on 'free guides'

Irrig8Quick - For measuring performance parameters in more detail, including application uniformity
(DU). pagebloomer.co.nz > Click on 'resources'

DairyNZ Guide to Good Irrigation – Parts one and two

Acknowledgements

DIY Spray Irrigation Performance Evaluation was developed by: Aqualinc research Ltd – Joe Powers The AgriBusiness Group – Sue Cumberworth, Dave Lucock and Geoff Dunham Mulgor Consulting Ltd – Claire Mulcock

With funding from:

Sustainable Farming Fund Grant No. C07/004 DairyNZ Energy Efficiency Conservation Authority PGG Wrightson Meridian

